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ABSTRACT

We estimate a vehicle’s speed, width, and length by jointly es-
timating its acoustic wave-pattern using a single passive acous-
tic sensor that records the vehicle’s drive-by noise. The acoustic
wave-pattern is estimated using three envelope shape (ES) com-
ponents, which approximate the shape of the received signal’s
power envelope. We incorporate the parameters of the ES compo-
nents along with estimates of the vehicle engine RPM and number
of cylinders to form a vehicle profile vector. This vector provides
a compressed statistics that can be used for vehicle identification
and classification. Vehicle speed estimation and classification re-
sults are provided using field data.

1. INTRODUCTION

Estimation of vehicle motion parameters using signals received
at passive sensors is a classical signal processing problem[1–6].
When a single passive acoustic sensor is used, wave propagation
effects are used to determine the source movements based on the
following assumptions that the vehicleA) is a point source [1,2],
B) has stationary signal characteristics that admit a model such
as an autoregressive moving average (ARMA) model [2], orC)
produces a pure tone [1]. These assumptions are only partially
satisfied by vehicles; hence the estimation algorithms based on
these assumptions do not perform as expected when they are ap-
plied to field data.

When an array of passive acoustic sensors is used, existing
approaches in the literature concentrate on the correlation among
the multiple microphone signals. Forren and Jaarsma [4] aim
to classify vehicles based on their axle detections by exploiting
the tire noise generated by vehicles. They use signal correlations
among three known microphones under assumptionB. However,
they do not model any interference effects of the tires as discussed
in this paper. Valcarceet al. [3] exploits the differential time de-
lays to estimate the speed by assumingA andB. They use ad-
ditive Gaussian noise models and obtain biased speed estimates
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as in [2]. Lo and Ferguson [5] develop a nonlinear least squares
method for speed estimation using a quasi-Newton method for
computational efficiency. The estimated speed is based on time-
delay-of-arrival estimates under assumptionsA andB. Similar
to [2,3], a negative bias in the estimates is also noted in their field
tests, which also involve helicopters as targets [5].

In this paper, we provide a power based algorithm for ve-
hicle speed estimation using a single microphone. We describe
the spectral and spatial content of vehicle signals and recast the
speed estimation problem as a spatial acoustic pattern recogni-
tion problem. We calculate the received signal’s power envelope
and approximate it using three envelope shape (ES) components.
The ES components spatially decompose the total vehicle noise
into parts that also account for tire interference effects,tire horn
effects, and air turbulence effects, which are not considered in
the current literature. For estimation, we introduce a vehicle pro-
file vector that characterizes the ES components and also includes
classifying vehicle information such as the engine revolutions per
minute (RPM) and the number of cylinders. The vehicle profile
vector can be thought as afingerprintof the vehicle.

Our motivation for the vehicle profile vector is also the acous-
tic correspondence problem: given recorded measurements of
two vehicles (calibration recordings), we would like to determine,
with high confidence, the label of the vehicle when it drives by
another control microphone. This problem has applicationsin
distributed sensor networks [7,8]. The problem becomes compli-
cated when 1) the control microphone has a different distance to
the closest point of approach (CPA) of the vehicle, 2) the vehicle
is moving with a different speed or moving on a different medium
(e.g., gravel as opposed to asphalt), 3) whether or not it is rain-
ing (has rained), 4) the vehicle is or was significantly loaded. In
this paper, we comment on how we can tackle the correspondence
problem using the vehicle profile vector.

2. VEHICLE SIGNAL’S SPECTRAL AND SPATIAL
CONTENT

A vehicle’s acoustic signal consists of a combination of various
noise signals generated by the engine, the tires, the exhaust sys-
tem, aerodynamic effects, and mechanical effects (e.g., axle ro-
tation, break pads, and suspension). Hence, the spectral content
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of a vehicle’s signal includes wideband processes as well ashar-
monic components. It also has a spatial distribution because the
noise sources are at different locations on the vehicle. Themix-
ture weighting of these spectral components at any given location
is dependent on the vehicle’s speed, whether the vehicle is accel-
erating, decelerating, turning, and whether the vehicle isin good
mechanical condition. In general, one can approximate a vehi-
cle’s signal as consisting of four noise components:

Engine Noise:The noise from an internal combustion engine
contains a deterministic harmonic train and a stochastic compo-
nent similar to the human speech [9, 10]. The stochastic compo-
nent of the engine noise is largely due to the turbulent air flow in
the air intake (or intercooler), the engine cooling systems, and the
alternator fans. This stochastic component is wideband in nature.
The deterministic component is caused by the fuel combustion in
the engine cylinders and has more power than the stochastic com-
ponent. The lowest deterministic tone is called the cylinder fire
ratef0, defined as the firing rate of any one cylinder in the engine.
Since each cylinder fires once every two engine revolutions in a
four-stroke engine, there is a simple relationship betweenf0 and
the RPMχ of a vehicle:

f0 =
χ

60 × 2
Hz. (1)

The strongest tone in the engine noise is called the engine fire
rateF0, and it is related tof0 in a simple manner:

F0 = f0 × p, (2)

wherep is the number of cylinders in the engine. One can think
of F0 and its integer multiples as the formant frequencies in hu-
man speech. The expressions forf0 andF0 model the reality
quite well; however, small deviations do occur. For example, in
modern cars, each cylinder is individually controlled by anengine
management system, which might fluctuatef0 andF0 to optimize
fuel consumption or torque. Hence, in some cases, the locations
of f0- andF0-harmonics might provide a fingerprint for the spe-
cific engine [9].

Car manufacturers try to suppress the engine noise as much
as possible for the passengers’ comfort inside the vehicle cabin in
frequency ranges that the human ears are most sensitive to (1kHz
to 4kHz) [10]. In addition, the manufacturers try to suppress the
noise levels outside the car as mandated by the federal standards
for highway noise (e.g., in the US, see [11,12]). They designqui-
eter engines and also exploit the body of the vehicle to filterthe
engine noise. To achieve this, the interior of the engine compart-
ment is usually treated with material for acoustical attenuation
(the metallic shell also acts as a filter). Hence, in some cases, the
engine noise might be stronger on the side and at the very front of
the car than other directions, because sound propagation through
the axle, the front grill, and the bottom of the engine block cannot
be filtered effectively.

Tire NoiseThe term tire noise is defined as the noise emitted
from a rolling tire as a result of its interaction with the road sur-
face. The tire noise is the main source of a vehicle’s total noise

after 50km/h [13]. It consists of two components: vibrational
noise and air noise [14,15]. The vibrational component is caused
by the contact between the tire threads and the pavement texture.
Its spectrum is most dominant between100 − 1000Hz frequency
range. The air noise is generated by the air being sucked-in or
forced out of the rubber blocks of a tire and is dominant in thefre-
quency ranges between 1000 and 3000Hz. The actual frequency
calculations are complicated by the thread geometry [16].

In the driving direction of the car, the road and the tire forms
a geometrical structure that amplifies the noise generated by the
tire-road interaction [15, 17, 18]. This effect is called the horn
effectand has a directional pattern [17]. This amplification re-
sults in a strong vehicle tire noise component at far distances in
the frequency range600 − 2000Hz ( [15]: Chapter 7.1.25). The
directivity of the horn effect depends on the tire width and radius,
the tire shoulders, the tire thread geometry as well as the weight
and torque on the tire. Analytical calculations based on these fac-
tors are rather difficult, and hence, numerical approaches such as
boundary element methods are used to simulate the horn effect
for a given tire configuration [17, 18]. Notably, most of the total
tire noise power including the horn effect lies between the fre-
quencies of700 − 1300Hz with a multi coincidence peak around
1000Hz [15].

Exhaust NoiseThe exhaust system consists of the exhaust
manifold, catalytic converter, resonator, exhaust pipe, muffler,
and the tail pipe. The system goes from the engine compartment
to the back of the car generating the exhaust noise. Due to the
system’s spatial distribution, this noise is less prominent in the
front of a vehicle. Unlike the engine block noise, the exhaust
system noise increases significantly with the engine load. The
exhaust noise is also affected by engine turbo/super chargers and
after-coolers [19,20].

Manufacturers use a combination of reactive and absorptive
silencers to keep the exhaust noise level down. The exhaust noise
has broadband characteristics with most of its power concentrated
around the low frequencies. It has the same harmonics frequency
structure as the engine and additional tail pipe resonancesthat
occur at fundamental frequency offe = c/(2l), wherel is the tail
pipe length andc is the speed of sound [19,20].

Air Turbulence Noise Vehicle induced turbulence can be-
come an important factor in the overall perceived loudness of a
vehicle as the vehicle speed increases. This noise is due to air
flow generated by the boundary layer of the vehicle and is promi-
nent immediately after the vehicle passes by the sensor (by adis-
tinctive whooshsound). The turbulence noise depends on the
aerodynamics of the vehicle as well as the ambient wind speed
and its orientation [21,22]. In our problem, we only consider the
case when the wind speed is much less than the vehicle speed.
For this case, perturbation analysis methods can yield analytical
expressions for the mean and the variance of the turbulent veloc-
ity components [23]. These expressions may be used to further
improve our results in this paper.
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Fig. 1. Dipole geometry. When the dipole sources are correlated,
the resulting wave propagation effect on the received signal power
is not a superposition of individual monopole effects.

3. INTERFERENCE PHENOMENA

Let s(t) be a zero-meani.i.d. acoustic signal emitted by the
monopole source. To simplify the results, we concentrate onthe
following special case, where the Fourier transform of the source
signal is assumed to be bandlimited as follows:

|S(Ω)| =

{

S, Ω1 ≤ Ω ≤ Ω2, W = Ω2 − Ω1;
0, otherwise.

(3)

When the source signal has a spatial extent, it is crucial to
consider interference effects while estimating the speed.To demon-
strate the interference effects, consider a dipole source moving
along thex-axis as illustrated in Fig. 1. In this case, the received
signal is the sum of the two source signals that are assumed tobe
coherent:

z[n] =
∑

i=1,2

1

ri[n]
s

(

βi[n]nFs −
ri[n]

c

)

, (4)

whereβi(t) (i = 1, 2) is the Doppler shift factor of each monopole
source in the dipole. Under the far field assumptions [24], one
can approximateri ≈ r andβi ≈ β as defined in the monopole
source case (Fig. 1).

In the far-field, with the same assumptions for the monopole
source, the Fourier transformZ(Ω) of the signalz(t) can be writ-
ten as

Z(Ω) ≈
S

(

Ω
β[n]

)

β[n]r[n]
e
−j Ω

β[n]2c
r1[n]

[

1 + e
−j Ω

β[n]2c
(r2[n]−r1[n])

]

.

(5)
Hence, the received signal bandwidth is modulated as in the monopole
case. However, note that the additional term in the bracketsin (5)
plays a crucial role when we look at the average received signal
power:

Pz[n] =
S2FsW

2πτ
× 1

β[n]r2[n]
× ρ[n], (6)
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Fig. 2. Interference patterns and power functions alongx and
y directions for a dipole source with the following parameters:
v = 20m/s, W = 1.5m, Ω1 = 600Hz, andΩ2 = 2000Hz.
In (b) and (d), the power function is plotted with (dashed line)
and without (solid line) the interference term. Note the dramatic
effect of the interference term on the power function in (d) along
they direction.

whereρ[n] is called the interference term. When the dipole source
signal is baseband, the interference term has the followingsim-
pler form:

ρ[n] = 1 + sinc

( W
β[n]c

(r2[n] − r1[n])

)

. (7)

The interference term has a special hyperbolic pattern (Fig. 2). In
the far field of the dipole, the interference term is constantalong
the asymptotes of the hyperbolas defined asr2 − r1 = 2α for
α = W

2 sinφ. Moreover, it is well-known that the local extremes
of the sinc function correspond to its intersections with the cosine
function. Hence, a minima and a maxima of the sinc function are
on the average half the cosine period away from each other.

4. JOINT ESTIMATION OF SPEED AND SPATIAL
ACOUSTIC PATTERNS

4.1. Envelope Shape Components

To determine a vehicle’s speed using acoustic observationsfrom a
single microphone, we jointly estimate the vehicle’s spatial acous-
tic pattern. In the previous section, we introduced an interfer-
ence effect that creates a part of the total spatial acousticpattern.
We denote any such component that makes up a vehicle’s spatial
acoustic pattern as anenvelope shape(ES) component. Note that,



earlier, we derived the interference effect on the observedacous-
tic power of the microphone signalwith respect to the source po-
sition. However, in this section, we use the reciprocity theorem
and change the reference frame from the moving vehicle to the
microphone to derive the ES components [25]. For simplicity, we
model the ES components using three piecewise constant func-
tions in dB scale with respect to the microphone bearingϕ as
illustrated in Fig. 3. We make the connection between the ES
components and the received signal power in the next subsection.

The first ES componentργ(ϕ) in Fig. 3 models the signal in-
terference due to the front and rear tires, which can be modeled as
dipole sources. This component explains the perturbation in the
envelope function of the vehicle acoustic drive-by signalsaround
the microphone bearing ofϕ = 17◦ (Fig. 2). The interference
effects before this angle are ignored because they are dominated
by the microphone noise. In this ES component, the tire inter-
ference decreases between the bearingsγ1 andγ2, increasing the
first component toδγ,1. The anglesγi are related to the width of
the car (dipole separationW ) through the interference term.

After the drive-by, the tire interference increases between the
bearingsγ′2 andγ′1, decreasing the first ES component toδγ,2.

Microphone

v
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ρθ(ϕ)
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Fig. 3. The microphone bearing reference orientation is defined
as the moving direction of the vehicle. Then, a vehicle’s spatial
acoustic pattern can be approximated by three main components
in ϕ. The first componentργ is due to the signal interference
from the front and rear tires. The second componentρθ explains
the variation as the microphone comes out of the horn-effectarea
of the tires. The third componentρψ is an approximate compo-
nent that accounts for a composite engine/exhaust/tire/turbulence
noise effect around the vehicle CPA.

The parameterδγ,2 is usually close to zero. We note that the
componentργ(ϕ) varies in a nonsymmetric fashion with respect
to ϕ. The asymmetry is due to the movement of the car: because
of the reference frame change, any angle defined in the vehicle
reference frame, denoted byφ, is related to the angles in the mi-
crophone frame, denotedϕ, through an aberration relation [26]:

tan
ϕ

2
=

√

1 + v/c

1 − v/c
tan

φ

2
, (8)

where the sign of the speed terms flip after the CPA. Hence, by
assuming a symmetric interference pattern for the front andrear
tires of the car based on constant car width, one can relate the
following angle parameters:

tan
κ′

2
= π −

(

1 − v/c

1 + v/c

)

tan
κ

2
, (9)

whereκ = γ1 andγ2.
The second ES componentρθ(ϕ) is due to the horn effect,

which was explained in Sect. 2. In the observed signal envelope,
at the microphone bearingθ1 the horn effect amplification of the
farthest front tire from the microphone starts to go down until the
bearingθ2 to δθ,2, when the horn effect of the closest rear tire to
the microphone also drops. The differential angleθ2−θ1 is a very
good indicator of the vehicle length, which can be used to com-
pare the relative sizes of vehicles. To convert the angle difference
into actual size, we use the following approximate relationship

ym
cos θ1

− L =
ym

cos θ2
, (10)

whereL is the car length. Geometrically,θ2 is the microphone
bearing of the front of the car after the car fully passes the line
defined by the bearingθ1.

After the CPA, the horn effect amplifies the tire noise between
bearingsθ′2 and θ′1, which are related toθ1 and θ2 also by the
abberration relation (9) (i.e.,κ = θi). The final level of the tire
noise componentδθ,2 is usually different than 0dB, because the
rear tire curvature is different from the front tire curvature due to
the torque on the tire. Any imbalance of the weight ratio on the
front and rear tires also causesδθ,2 to deviate from 0dB.

Finally, the third ES componentρψ(ϕ) is a composite compo-
nent that incorporates (i) engine noise, (ii) exhaust system noise,
(iii) interference pattern of the tires on the side of the car, and
(iv) the noise caused by the air turbulence. To keep the number
of ES components manageable, we approximate the composite
interference pattern as a step function that rises from 0dB to δψ
between bearingsψ1 andψ2. When this approximation becomes
poor,δθ,2 of the second ES componentρθ(ϕ) compensates. We
found that the angle differenceψ2 −ψ1 is also an indicator of the
vehicle length. Hence, (10) is also used to relate the anglesin the
third interference component to the car lengthL.



4.2. Vehicle Profile Vector

To jointly determine the speed and the vehicle’s spatial acoustic
pattern, we use the vehicle profile vectorλ, which is defined as
follows:

λ =
[

λv λϕ λδ λf

]

, where (11)

λv =
[

S v W L
]

, λϕ =
[

ϕ0 γ1 θ1 ψ1

]

,

λδ =
[

δγ,1 δγ,2 δθ,1 δθ,2 δψ
]

, andλf =
[

χ p
]

.

(12)

The vectorλv consists of the physical parameters of the vehicle
such as the loudnessS, speedv, car widthW , and the car length
L. The vectorλϕ has the initial vehicle bearingϕ0 and the an-
gles that define the ES components along withλδ, which contains
the amplitude attenuations and amplifications for the ES compo-
nents. Lastly, the vectorλf has the RPMχ and the number of
cylindersp of the vehicle. The profile vectorλ can be viewed as
afingerprintof the vehicle and can be used for appearance-based
tracking and classification.

4.3. Amplitude Observations

In this section, we derive a relationship between the vehicle pro-
file vector λ and the square-root of the average signal power,
which we will denote as the power envelope. This relationship is
used to determine the vehicle profile vector using standard maxi-
mum likelihood estimation techniques.

We define the power envelope function by usingτ -discrete
samples ofz[n] as follows:

E [nτ ] = E(t)
∣

∣

∣

t= nτ τ
F s

=
√

Pz[nτ ], (13)

where subscriptτ under the sample indexn implies that the sam-
ples of the continuous function are calculated at everyτ/Fs sec-
ond. The parameterτ is chosen so that the DFT coefficients
used to calculate the power function atτ -samples apart are sta-
tistically uncorrelated, and hence, each sample ofE [nτ ] (nτ =
0, 1, . . . , Nτ − 1) is also statistically uncorrelated of the others.

Assuming that the noise acting on the microphone signalz[n]
is zero-mean additive white Gaussian noise with varianceσ2

u, we
relate the envelope observations to the vehicle profile vector as
follows:

E2[nτ ] ≈ Aλ[nτ ]e
2mτ +

σ2
u

τ
wτ ,

Aλ[nτ ] =
C

β[nτ ]r2[nτ ]

∏

i=γ,θ,ψ

10ρi(ϕ[nτ ])/10, C =
S2FsW

2πτ

(14)

whereAλ[nτ ] is the directional power variation,emτ is ani.i.d.
multiplicative noise on the signal amplitude (m ∼ N

(

0, σ2
m

)

),
wτ is ani.i.d. additive Chi2τ noise (chi-squared distribution with
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Fig. 4. Drive-by test by a 6-cylinder Chevy Impala moving with
18.7m/s at an approximate distance of 5.8m. (a). The acoustic
signal was sampled atFs = 48kHz. The power envelopeE is cal-
culated withτ = 480. In the figure,

√
τE is plotted to emphasize

the variation. There is an asymmetry in the envelope estimates
that can be explained by the ES components. (b). The spec-
tral content of the acoustic signal. Note the strong interference
at 60Hz. The tire-noise spectrum, which is concentrated around
700 − 1300Hz, does not exhibit a frequency modulation pattern
as predicted by the theory.

τ degrees of freedom) that is also independent ofmτ , and

β[nτ ] = 1 − v

c
cosϕ[nτ ],

r[nτ ] =

√

(vτ/Fs)
2

+ r2[nτ − 1] − 2 (vτ/Fs) r[nτ − 1] cosϕ[nτ − 1],

ϕ[nτ ] = ϕ[nτ − 1] + sin−1

(

vτ

Fsr[nτ ]
sinϕ[nτ − 1]

)

,

r[0] = ym secϕ0.

(15)

In (15), we implicitly assume that the constant velocity motion
equations are not violated even though the reference frame is
changed from the moving vehicle to the stationary microphone.

Let E = [ E [0] . . . E [nτ ] . . . E [Nτ − 1] ] denote the
aggregate envelope observations. Then, the observation likeli-
hood, given the vehicle profile vector as well as the noise vari-
ancesσ2

m andσ2
u, can be determined by a straightforward bivari-

ate transformation followed by marginalization [27]. Unfortu-
nately, the marginalized data likelihood does not have a closed
form solution and needs to be evaluated numerically. Moreover,
note that the noise variancesσ2

m andσ2
u have to be determined for

the evaluation of the likelihood. A joint estimation of the vehicle
profile vector and the noise variances can be done. However, this
increases the numerical complexity. In theory, these noisevari-
ances can be treated as nuisance parameters and can be integrated
out using reference priors [28]. In practice, they further increase
the necessity of numerical integration.

4.4. Frequency Observations

The spectral content of a vehicle exhibits directional variation,
making it difficult to use the frequency modulation effects of the



vehicle motion to determine speed. We emphasize that this di-
rectional variation is not due to the motion of the vehicle but it
is due to tire noise effects, which are stochastic in nature as dis-
cussed in Sect. 2. The useable frequency tracks for speed esti-
mation are generated by the engine because the frequency modu-
lation effects can be observed in the deterministic component of
the engine noise. These deterministic engine frequencies span the
0−250Hz range at nominal RPM’s (e.g., Fig. 4(b)). At moderate
vehicle speeds (30 − 50mph), the full Doppler shift swingsF0

approximately %6, also corresponding to an RPM change of the
same amount (∆χ ≈ 200). Hence, if a driver changes the car’s
RPM by50 during the vehicle drive-by, there will be a %25 error
in F0 when one assumes a constant frequency source. We empha-
size that this RPM change is unnoticeable on the dashboard ofthe
vehicle and is likely to happen. On the other hand, the effectof
the same RPM change on the total car loudness is negligible.

Therefore, determining a probability density function forthe
vehicle profile vector by fitting a Doppler shift function to the
engine and tire frequency tracks is an unreliable approach.For
example, in [2], the speed estimation was performed using anau-
toregressive modeling of the acoustic signals under a pointsource
assumption. It was concluded that the Doppler-based speed es-
timation on the source frequencies does not perform well with
field-data [2]. It was also concluded that, with the same source
assumptions, the envelope measurements yield improved speed
estimates than the frequency measurements; however the speed
estimates are nonetheless biased. A possible reason of thisbias
mentioned in [2] and also observed in [3–5] is the additive Gaus-
sian model as opposed to the multiplicative noise model thatwe
employ in this paper.

On the other hand, the spectral harmonic content can be used
to determineλf of the vehicle profile vector. Moreover, condi-
tioned onλv estimate, it possible to further refineλf by com-
pensating for the Doppler shifts. The number of cylindersp is
usually the most elusive to estimate because the body of a vehicle
may also act as a filter to directionally suppress the frequency at
the engine fire rateF0. Hence, it is rather easy to incorrectly es-
timate the number of cylinders of a vehicle because the strongest
frequency is not necessarilyF0. If a characterization can be done,
which is applicable to the vehicles of interest, the number of
cylinders can also be estimated robustly. Estimation ofχ can be
done accurately using harmonic analysis methods [29]. In our es-
timation, we use the power spectral density of the acoustic signal
to determineλf . Details can be found in [29].

5. EXPERIMENTS

To demonstrate the ideas, data was collected withFs = 48KHz at
a two-way street with an omnidirectional microphone, emplaced
1.5m off the ground on a pole at the sidewalk. The distance of the
bottom of the microphone pole to the center of the street is 7.4m.
A video camera is used to establish the ground truth and identify
the vehicles in the test.

5.1. Vehicle Profiling

Table 1 lists the results of the vehicle speed estimates obtained by
three different methods usingτ = 480 samples: 1) the full vehi-
cle profile vector using (14), 2) onlyλv using (14), and 3) only
λv using the constant velocity motion model on a point source
as in [1, 2]. It is seen that the estimates of [2] are improved by
incorporating the multiplicative noise model on the signalenve-
lope. Estimation using the ES components yields the best esti-
mates (Figs. 5 and 6). We also estimated the number of cylinders
and the RPM of the vehicles by using the methods in [29]. The
number of cylinder estimatesp are estimated by compensating
for the microphone spectral characteristics. However, there was
no compensation for any vehicle directional variation.
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Fig. 5. Ford F150. (a) Estimated envelope by the interference
components is shown with the solid line. The dashed line and the
dotted line belong to the additive and multiplicative noisemodel
results, respectively. (b) Estimated ES components are shown.
According to the ES components, the vehicle is louder in the rear
than front. (c) Estimated joint distribution of the vehicledimen-
sions around the solution.
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Fig. 6. Chevy Impala. (a) Observed envelope exhibits significant
variations. The interference components (solid line) adequately
explains the variations. (b) Estimated ES components are shown.
Parameterδψ is relatively larger than the other components indi-
cating significant air noise. (c) Estimated joint distribution of the
vehicle dimensions around the solution.

5.2. Vehicle Classification Results

The vehicle profile vector provides a natural basis for classifying
vehicles. Figures 7(a) and (b) show that the vehicles can be sepa-
rated into two classes based on their length and size. Note that the
estimated vehicle lengths are not exact vehicle lengths; however,
they can separate compact cars from SUV’s or trucks. Figure 7(c)



Table 1. Field Test Results
Ground Truth Estimation using λ Estimation using λ

§
v Estimation using λ

†
v

Vehicle ym vcamera v C L W‡ χ p♮ v C v C

Ford F150 6.3 17.54m/s 17.86m/s 12.60 5.38m 1.30m 3038 8 28.00m/s 24.08 21.39m/s 21.27
Chevy Impala 5.8 18.68m/s 18.60m/s 9.23 2.58m 1.75m 3300 6 18.29m/s 11.55 15.05m/s 10.90
Honda Accord 4.3 16.74m/s 14.44m/s 6.86 3.28m 1.40m 3074 6 17.34m/s 10.17 14.49m/s 9.67
Nissan Maxima∗ 4.6 13.32m/s 13.20m/s 12.45 3.28m 1.50m 3825 6′ 14.23m/s 14.86 14.27m/s 14.49
Nissan Maxima∗ 4.1 4.14m/s 4.49m/s 6.34 2.58m 1.50m 3150 4 4.75m/s 9.90 3.46m/s 9.20
Isuzu Rodeo 8.1 13.44m/s 13.89m/s 7.87 5.20m 1.35m 3450 6 11.32m/s 7.97 11.79m/s 7.95
Mercedes E 8.1 13.94m/s 13.80m/s 7.68 2.93m 1.50m 3075 6 15.51m/s 10.47 11.78m/s 9.93
Volvo 850 SW 8.1 14.11m/s 14.69m/s 9.60 3.10m 1.40m 2250 10′ 12.93m/s 9.01 11.22m/s 8.63
Nissan Frontier 4.3 17.56m/s 17.84m/s 9.31 4.85m 1.40m 2625 6 17.02m/s 9.92 17.56m/s 9.74
VW Passat 5.1 11.66m/s 11.58m/s 6.06 2.75m 1.80m 1950 6 8.58m/s 6.06 8.66m/s 6.11

Error STD 0.8246m/s 3.7203m/s 2.2627m/s

Error STD¶ 0.2777m/s 1.5154m/s 1.5126m/s
Bias -0.0735m/s 0.6845m/s -1.1458m/s

Bias¶ 0.1737m/s -0.4017m/s -1.7013m/s

§ Using the method in [2] with multiplicative noise model introduced here.
† Using the method in [2] without any change.
‡

A fixed bandwidth of W = 600Hz is used to determine the car widths.
♮

Estimated by finding the frequency F0 with the maximum power spectral density between frequencies 85-210Hz and then dividing F0 by the CFR f0 estimate [29].
′

Incorrectly estimated. The actual values are 4 (Maxima) and 5 (Volvo).
* Same vehicle.
¶

Calculated by removing one outlier in each method.

also illustrates that it is possible to identify loud vehicles such as
vehicles with mechanical problems or heavily loaded SUV’s or
pick-up trucks, which are expected to be louder than usual. This
classification is based on the fact that the loudness of the vehi-
cle has a certain functional distribution as indicated in [14, 15].
Hence, given two similar vehicles, it may be possible to identify
if one of them is heavily loaded or has mechanical problems even
if they move at different speeds.
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Fig. 7. (a) Estimated vehicle lengths are compared. There is a
clear separation between compact cars and large vehicles. (b) Es-
timated vehicle sizes are compared. (c) Logarithm of the vehicle
signal amplitudes are plotted with respect to their speed. There is
a linear trend in the plot as also indicated by [14, 15]. The solid
line represents a least squares fit to the data without NissanMax-
ima. The dotted lines are one standard deviation away from the
mean. Nissan Maxima is louder than the other cars because the
vehicle has mechanical problems.

6. CONCLUSIONS

We presented a method to determine a vehicle’s speed via its
acoustic drive-by sounds recorded at a microphone, by formulat-
ing the problem as a joint speed and acoustic pattern estimation
problem. We achieve this estimation using a vector that profiles
the directional variation of the vehicle acoustic pattern.The vehi-
cle profiles vector enables a signal processor to better address the

vehicle correspondence problem since the vehicle profile vector
provides unbiased speed and loudness estimates as well as vehi-
cle dimensions. It also generates better discriminative features
that are compressed into a 15-dimensional space. Parameters λv

andλf of the vehicle profile vector can improve the confidence
of the correspondence matches, whereas their compression de-
creases communication among a calibration microphone and a
control microphone. However, as usual, given the difficultyof
the correspondence problem, one should not expect superlative
performance for all cases even with the vehicle profile vector.

While determining the vehicle speed, we relied on the signal
power calculations and argued that the signal frequency informa-
tion (Doppler) was not useful. On the other hand, when an array
of microphones is available, one can also infer from the phase
of the received acoustic data across the array. In this case,we
expect that the performance should improve more than that one
would expect to obtain from multiple independent amplitudeob-
servations. We envision that when multiple vehicles are present,
the array can provide the acoustic steering necessary to remove
the cocktail party effect on the ES components. Hence, the ap-
proaches in the literature can be improved to obtain unbiased
speed estimates when an array is used.
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